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ABSTRACT 1 

Direct demand (DD) models are used to estimate pedestrian volumes at intersections as a 2 

function of readily available variables, such as land use and socioeconomic features. The 3 

objectives of this paper are to (1) identify and qualitatively assess existing DD models in the 4 

literature; and (2) evaluate the spatial transferability of DD models for estimating Annual 5 

Average Daily Pedestrian Traffic (AADPT) at signalized intersections. Six DD models 6 

developed from jurisdictions with varying characteristics were selected for spatial transferability 7 

assessment. The models were applied to three jurisdictions (Milton, Canada; Pima County, US; 8 

and Downtown Toronto, Canada), that had notable differences in the level of pedestrian activity, 9 

land use, and socioeconomics. Observed pedestrian volumes were obtained for sites in each 10 

jurisdiction. The DD models performed considerably differently across jurisdictions. Five of the 11 

models performed reasonably well for Milton, a jurisdiction that is comparable to those 12 

considered in the calibration of the selected DD models and that shares characteristics with many 13 

suburban Canadian and US jurisdictions. Overall, the applications for Pima County and 14 

Downtown Toronto, which are associated with extremely low and high pedestrian volumes, 15 

respectively, provided poor accuracy. This paper demonstrated the potential for transferring 16 

existing DD models to other jurisdictions; but also identified the clear need for further research 17 

to improve the spatial transferability of DD models. 18 

 19 

Keywords: Direct Demand Model, Spatial Transferability, Pedestrian Volume, Pedestrian 20 

Exposure.  21 
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INTRODUCTION 1 

Over the past decade, there has been increasing support and encouragement for the use of active 2 

transportation modes (1,2), which has led to an increase in the number of walking trips (3). 3 

Consequently, there has also been a corresponding increasing need for explicitly incorporating 4 

pedestrian exposure (volume) within quantitative transportation system management decision 5 

making, such as safety analyses or site selection for design or operational improvement.  6 

 The two common sources for pedestrian volume data at an intersection level are short-7 

term counts (STCs) and continuous counts (CCs) (4). STCs are normally collected manually over 8 

the course of one or more non-holiday weekdays. Typically, this information is a product of field 9 

surveys conducted for signal timing design or urban planning purposes. CCs are generally 10 

obtained from permanent count stations that provide long-term information and are useful for 11 

detecting systematic oscillations in pedestrian volumes (i.e., hourly, daily, and monthly patterns). 12 

When an adequate number of CC stations are available, STCs can be expanded to annual 13 

measures of exposure, referred to in this work as Annual Average Daily Pedestrian Traffic 14 

(AADPT). Studies have suggested that pedestrian STCs should be renewed at intervals between 15 

three and seven years (5). Given resource constraints, jurisdictions are likely to have sites 16 

(locations) for which temporally valid (i.e., sufficiently recent) STCs are not available preventing 17 

comprehensive jurisdiction-wide exposure estimations. To address this issue, researchers have 18 

developed direct demand (DD) models to estimate pedestrian exposure without the need for 19 

STCs. 20 

 DD models are calibrated using sites where AADPT is known by associating it with 21 

explanatory variables that are easily accessible, such as land use, socioeconomics, spatial syntax, 22 

and operational and geometric features. The methods and explanatory variables used for DD 23 

modeling are well documented in the literature. There are already a variety of studies available, 24 

all of which were conducted in different types of jurisdictions and used varied sample sizes and 25 

levels of complexity (i.e., number of explanatory variables).  26 

Developing a DD model for a local jurisdiction requires that the jurisdiction have: (a) 27 

STCs from a sufficient number of sites. Recent studies have shown that a sample size of around 28 

50-70 sites is suitable for calibrating models with an R-squared of around 0.70 (6–8); (b) a 29 

quantity of permanent stations that would allow the estimation of reliable expansion factors, 30 

accounting for potential spatial and temporal trends. This number probably ranges between 6 and 31 

25 stations, depending on the jurisdiction’s characteristics. This estimate is based on the FHWA 32 

Traffic Monitoring Guide’s recommendation of having three to five CC locations for each factor 33 

group (5) and on the typical number of factor groups considered in non-motorized studies, which 34 

varies between two and five groups (9–11). 35 

An alternative for jurisdictions that lack the data and/or resources required to develop a 36 

local DD model is to make use of an existing DD model that was calibrated in another 37 

jurisdiction. To the authors’ knowledge, no study has yet evaluated the spatial transferability of 38 

existing DD models. Consequently, the objectives of this paper are: (1) identify and qualitatively 39 

assess existing DD models; and (2) evaluate the spatial transferability of existing DD models for 40 

estimating AADPT at signalized intersections. 41 

 This work is divided into two parts. In the first part, state-of-the-art DD models are 42 

identified and evaluated with the goal of choosing them for the spatial transferability task. In the 43 

second part, the spatial transferability of the selected models is examined through the application 44 

of the models to sites in three different jurisdictions for which AADPT are known. 45 

 46 
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EXISTING DIRECT DEMAND MODELS 1 

This section presents an assessment of DD models available in the literature, aiming at the 2 

selection of models calibrated in different contexts for the development of the spatial 3 

transferability task. In total, twenty studies (models) published in the past two decades were 4 

reviewed. Each model from the literature was assessed with respect to the following three 5 

criteria: (a) the number of sites in the calibration dataset; (b) the model’s complexity, represented 6 

by the number of explanatory variables; and (c) the level of pedestrian activity observed in the 7 

original jurisdiction, represented by the calibration dataset’s average AADPT. The application of 8 

these criteria resulted in six DD models that were then examined with respect to their spatial 9 

transferability. 10 

Among the diversity of existing DD models, four studies stand out for having used more 11 

than a thousand sites for model calibration (12–15). The number of sites employed in these 12 

research projects is much higher than that of other studies, which typically use between 50 and 13 

200 sites. Kim et al. (12) developed a DD model using information from 10,000 sites in Seoul, 14 

South Korea. However, the authors employed a geographically weighted regression, where the 15 

model coefficients vary according to their location, making it impossible to transfer them to 16 

other jurisdictions. Miranda-Moreno and Fernandes (13) calibrated a DD model for Montreal, 17 

Canada based on data from 1,018 signalized intersections. The authors used 8-hour pedestrian 18 

volume as the model outcome rather than the more common AADPT or annual volumes, making 19 

comparison with other models difficult. For those reasons, only Griswold et al. (14) and 20 

Singleton et al. (15) were chosen for the transferability task from the studies that applied the 21 

largest sample sizes. 22 

Regarding the model’s complexity, a common number of explanatory variables varies 23 

between five and eight. Four of the selected DD models are within this range, and two of them 24 

exemplify extreme situations where three and fourteen variables were employed. To represent 25 

jurisdictions with different levels of pedestrian activity, studies that exhibited an average 26 

AADPT of 186 to 2,433 were chosen for the transferability task. Table 1 details the information 27 

for each of the six selected studies, including the model coefficients. 28 

Table 2 presents a summary of the variables that were significant, and therefore included, 29 

in each model, divided into three categories: census-based, land use, and geometry and operation 30 

variables. Regarding census-based variables, it is observed that population and employment are 31 

important features to represent the production and attraction of trips, respectively. Besides this, 32 

the variables that characterize income and vehicle ownership indicate that increases in the level 33 

of motorization are associated with a reduced generation of walking trips. Concerning land use 34 

attributes, the presence of commercial establishments, schools, and universities in the 35 

intersection’s surroundings is linked to increases in pedestrian activity. The contribution of 36 

residential land use (e.g., sign of the coefficient) is not consistent among the models. In some 37 

models (e.g., Sanders et al. (7) and Singleton et al. (15)) the sign of the coefficient is positive 38 

indicating that increases in the number of residential addresses results in larger pedestrian 39 

volumes. In the Hankey et al model, the coefficient of residential land use is negative indicating 40 

that if the land use around an intersection is predominantly residential, the production and 41 

attraction of walking trips may be reduced. Studies have suggested that incorporating variables 42 

that represent the land use mix could be beneficial for characterizing pedestrian activity (16). In 43 

terms of geometric and operational characteristics, the presence of transit stops is certainly a 44 

generator of walking trips. Furthermore, four-way intersections and those located on major or 45 

minor arterials are associated with more pedestrian trips than three-way intersections and those 46 
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located on collector streets, respectively. Similar tables to Table 2 can be found in Singleton et 1 

al. (15), Schneider et al. (17), and Munira and Sener (18). 2 

  3 

TABLE 1 DD models selected for transferability 4 

Study Variable Unit 
Buffer 

radius 
Model 

coefficient    

Griswold et al. (14) 

California State 

N = 1,270 

Log-linear model 

Annual pedestrian volume 

Avg. True AADPT = 2,433 

(Median = 438) 

Number of employees1, 2 Count 0.25 mi 0.39  

Population Count 0.50 mi 0.000142  

Street segments1, 2 Count 0.50 mi 0.302  

Walk commute mode share % (decimal) 0.50 mi 2.84  

Schools1, 2 Count 0.50 mi 0.0444  

Int is on a major arterial 0, 1 or 23 - 0.457  

Int is on a minor arterial 0, 1 or 23 - 0.384  

Four-way intersection 0=No; 1=Yes - 0.413  

Constant - - 5.58  

Hankey et al. (6) 

Blacksburg, USA 

N = 72 

Log-linear model 

AADPT 

Avg. True AADPT = 192 

Sidewalk length Meters 750 m 0.000078  

Off-street trail Meters 100 m -0.004  

HH income Dollars 1,750 m -0.000016  

Residential address Count 1,000 m -0.00062  

Population density Pop per sq-km 750 m 0.00017  

Transit stops Count 250 m 0.13  

Constant - - 5.1  

Munira et al. (8) 

Austin, USA 

N = 44 

Negative Binomial 

AADPT 

Avg. True AADPT = 605 

Trail length Feet 0.50 mi 0.0000637  

Commercial places Count 0.10 mi 0.0239  

Population under 5 years Count 0.50 mi -0.00372  

Population working at home Count 0.10 mi 0.061  

Transit stops Count 1.00 mi 0.00896  

Constant - - 4.088  

Sanders et al. (7) 

Seattle, USA 

N = 50 

Poisson model 

Annual pedestrian volume 

Avg. True AADPT = NA 

Residential address Count divided by 10,000 0.25 mi 0.876  

Commercial places Count 0.25 mi 0.0097  

Presence of university 0=No; 1=Yes 0.25 mi 0.4468  

Constant - - 12.9496  

Schneider et al. (17) 

Milwaukee, USA 

N = 260 

Negative Binomial 

Annual pedestrian volume 

Avg. True AADPT = 186 

Population density Pop per sq-mile 400 m 0.00014  

Employment density Emp per sq-mile 400 m 0.000021  

Transit stops Count 100 m 0.336  

Retail places Count 100 m 0.108  

Restaurants and bars Count 100 m 0.116  

Presence of schools 0=No; 1=Yes 400 m 0.515  

Household with zero vehicle % (decimal) 400 m 5.307  

Constant - - 8.334  

Singleton et al. (15) 

Utah, USA 

N = 1,494 

Log-linear model 

AADPT 

Avg. True AADPT = 267 

Population density1 Pop. per sq-mile divided by 1,000 0.50 mi 0.326  

Employment density1 Emp. per sq-mile divided by 1,000 0.25 mi 0.124  

Household size1 Person per HH 0.25 mi 0.418  

Household income Annual income in $1,000 0.50 mi -0.01  

Vehicle ownership Vehicles per HH 0.50 mi -0.198  

Residential address Land use % (integer) 0.25 mi 0.006  

Commercial places Land use % (integer) 0.25 mi 0.019  

Intersection density Intersection per sq-mile 0.25 mi 0.004  

4-way intersections % (integer) 0.50 mi 0.006  

Schools Count 0.25 mi 0.155  

Worship places Count 0.50 mi 0.06  

Transit stops Count 0.25 mi 0.068  

Park acreage Area in acres 0.50 mi 0.022  

Int is on a major road 0=No; 1= Yes - 0.242  

Constant - - 2.747  

1Ln-transformed variables. 2The authors of the original paper added a constant value of 0.001 to ln-transformed 5 
variables to avoid null values. 3Represents the number of major (or minor) arterials that cross the intersection. 6 
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TABLE 2 Variables included in each DD model 1 

Variable 
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n

 e
t 

a
l.

 (
1
5

) 

Census based 

Population (count or density) +   +   + + 

Population under 5 years (count)       -     

Population working at home (count)       +     

Employment (count or density)     +   + + 

Household size (avg)           + 

Household income ($) -         - 

Household with zero vehic (%)         +   

Vehicle ownership (avg)           - 

Walk commute mode share (%)     +       

Land use 

Commercial (count, area or %)   +   + + + 

Residential (count, area or %) - +       + 

Restaurants and bars (count)         +   

Park area           + 

Worship places (count)           + 

Schools (count or presence)     +   + + 

University (presence)   +         

Geometry and operation 

Street segments (count or length)     +       

Off-street trail length -     +     

Sidewalk length +           

Four-way intersection (0/1 or %)     +     + 

Intersection density           + 

Major arterial road (0/1)     +     + 

Minor arterial road (0/1)     +       

Transit stops (count) +     + + + 

Note: association with pedestrian volume: (+) positive; (-) negative. 2 
 3 

 In respect to the model’s formulation, log-linear, Poisson, and Negative Binomial 4 

structures are observed in the six chosen models. All these formulations apply a link function 5 

(natural logarithm transformation) to the dependent variable. The general formulation of DD 6 

models is presented in Equation 1. To convert the ln-transformed variable to AADPT or annual 7 

volume, both sides of the equation are exponentiated (Equation 2). Note that Griswold et al. (14) 8 

and Singleton et al. (15) applied a ln-transformation to some of the independent variables. 9 

 10 

ln(𝑌𝑖
′) =  𝛽0 +  𝛽𝑋𝑖 +  𝛾 ln 𝑋𝑖

∗                                                                                                      (1) 11 

 12 

𝑌𝑖
′ =  𝑒(𝛽0+ 𝛽𝑋𝑖)  ×  𝑋𝑖

∗ 𝛾
                                                                                                                (2) 13 

 14 
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Where: 1 

𝑌𝑖
′ = estimated AADPT or annual pedestrian volume at intersection 𝑖. 2 

𝑋𝑖 = vector of non-transformed explanatory variables associated with intersection 𝑖. 3 

𝑋𝑖
∗ = vector of explanatory variables associated with intersection 𝑖 that are ln-transformed. 4 

𝛽0 = model constant. 5 

𝛽 and 𝛾 = vector of model coefficients. 6 

 7 

 To the authors’ knowledge, no efforts regarding the spatial transferability of existing DD 8 

models have been made yet. To contribute to this knowledge gap, an application of the six 9 

chosen models to three different jurisdictions is presented and discussed in the next sections. 10 

 11 

SPATIAL TRANSFERABILITY OF DIRECT DEMAND MODELS 12 

With the knowledge of the explanatory variables and model coefficients from the selected 13 

models, their application to other jurisdictions depends only on the availability of the data for the 14 

explanatory variables. As indicated in Table 2, these explanatory variables generally fall into one 15 

of three categories, namely Census, Land Use, and Geometric and Operational. These data are 16 

typically available from national census data sources, jurisdiction open data sites, or regional 17 

transportation survey data sources. Regarding the data collection, there are two categories of 18 

variables: count/length and area based. The assemblage of the first is straightforward by using 19 

GIS functions to count points or sum lengths within the designated buffer areas around the site. 20 

The second category is often associated with census and transportation survey information, 21 

where the data is gathered into zones. Two strategies have been considered to deal with this kind 22 

of data: (a) taking the arithmetic average of the variable for every zone that is intersected by the 23 

buffer; and (b) taking the weighted average of the variable based on the buffer intersection area. 24 

Some authors explicitly identified which strategy they followed: Schneider et al. (17) used an 25 

arithmetic average, and Hankey et al. (6) applied a weighted average. When no information is 26 

provided, the weighted average is assumed. 27 

 To assess the accuracy of the DD model application, it is also necessary to know the true 28 

pedestrian exposure for each site. We have chosen to select sites and jurisdictions for which 29 

continuous counts are available so that AADPT can be directly computed (e.g., one year of CCs 30 

available) or estimated from time series of daily counts across a relatively large number of days. 31 

This avoids the introduction of errors from using one- or two-day STCs and expanding these to 32 

AADPT using expansion factors from CC stations. Three indicators were employed to measure 33 

the errors between observed (true) and estimated AADPTs: Mean Absolute Error (MAE) 34 

(Equation 3), Mean Absolute Percent Error (MAPE) (Equation 4), and the ratio of MAE and the 35 

average true AADPT (Equation 5). 36 

 37 

𝑀𝐴𝐸 =  
1

𝑛
 ∑ |𝑌𝑖 −  𝑌𝑖

′|𝑛
𝑖=1                                                                                                               (3) 38 

 39 

𝑀𝐴𝑃𝐸 =  
1

𝑛
 ∑ |

𝑌𝑖− 𝑌𝑖
′

𝑌𝑖
|𝑛

𝑖=1                                                                                                                (4) 40 

 41 

𝑅𝑎𝑡𝑖𝑜 𝑀𝐴𝐸 �̅�⁄ =  
𝑀𝐴𝐸

�̅�
=  

𝑀𝐴𝐸
1

𝑛
∑ 𝑌𝑖

𝑛
𝑖=1

                                                                                                (5) 42 

 43 

 44 
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Where: 1 

𝑛 = number of sites. 2 

𝑌𝑖 = observed (true) AADPT at intersection 𝑖. 3 

𝑌𝑖
′ = estimated AADPT at intersection 𝑖. 4 

 5 

Jurisdictions chosen for the spatial transferability assessment 6 

Three jurisdictions, capturing a diverse range of geography, land use, urban form, population 7 

density, and climate were chosen for the DD model application: City of Milton, Canada; Pima 8 

County, USA; and City of Toronto, Canada. Each of these three jurisdictions has deployed a 9 

camera-based traffic monitoring system from the same vendor. The pedestrian volume counts 10 

(aggregated to intersection daily totals) were obtained from this system for each site. Counts 11 

from time periods that were substantially impacted by the COVID-19 pandemic were avoided. 12 

Due to jurisdiction specific COVID-19 impacts and particularities in the data, a different strategy 13 

was necessary to estimate AADPT for each jurisdiction: 14 

 15 

• Milton (n = 21): Continuous count data were available from 6 sites from more than one year.  16 

Day-of-week and month-of-year expansion factors were developed from these 6 sites and 17 

applied to 15 sites, from which the AADPT was estimated from samples ranging between 31 18 

and 258 days. The counts ranged from June-2018 to March-2020. No particular pattern was 19 

observed in the pedestrian volume of the sites employed for expansion factor development, 20 

hence no factor grouping was applied. 21 

• Pima County (n = 81): Only three sites had sufficient data for the development of expansion 22 

factors in a pre-pandemic period (prior to March 2020), and a significant portion of the sites 23 

have counts only for the period after March 2020. It was decided to estimate the Seasonal 24 

Average Daily Pedestrian Traffic for the period between April-2021 and November-2021 and 25 

to expand it to AADPT using factors obtained from the three sites with complete pre-26 

pandemic data from October-2018 to February-2020. By April-2021 most of the COVID-19 27 

restrictions had been lifted in Pima County, including the school restrictions. The expansion 28 

factoring considered the presence of schools to appropriately deal with the reduced 29 

pedestrian volume in June and July due to school holidays. 30 

• Toronto (n = 28): the data available allowed for the direct calculation of AADPT for all the 31 

sites using information from January-2018 to March-2020. 32 

 33 

Figure 1 shows the location of the sites (signalized intersections) in each jurisdiction with 34 

an indication of the AADPT estimate. It is observed that the level of pedestrian activity differs 35 

significantly in each jurisdiction. Milton, for example, presents an average AADPT of 313, 36 

which is within the range of values used to calibrate existing DD models (Table 1). On the other 37 

hand, Pima County and Toronto represent two different extremes. The sites from Pima County 38 

have extremely low pedestrian activity (average AADPT = 28), with 30% of the sites comprise 39 

daily pedestrian volumes between two and seven. The sites from Toronto are situated in 40 

Downtown Toronto, a region that is characterized by its high employment and commercial 41 

densities, which are reflected in a significant pedestrian movement (average AADPT = 23,481). 42 

The choice of such distinct jurisdictions was intention to provide the opportunity to assess the 43 

transferability of DD models in different contexts. 44 

To verify to what extent the use of post-pandemic data affected the low pedestrian 45 

volume observed in the Pima County sites, Monthly Average Daily Pedestrian Traffic (MADPT) 46 
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was calculated from October-2018 to February-2020 (pre-pandemic period) and compared to 1 

MADPT for the period considered in the study (from April-2021 to November-2021). Using data 2 

from nine sites, an average reduction of 5.65% of the MADPT was observed for the post-3 

pandemic period. This is an indication that pedestrian activity had returned to pre-pandemic 4 

levels during the period of the study. 5 

 6 

 7 
Figure 1 Site location: (a) Milton, (b) Pima County, and (c) Downtown Toronto 8 

 9 

 Figure 2 presents the distribution of several key explanatory variables for each 10 

jurisdiction. Figure 2 also shows the mean, minimum, and maximum statistics from the 11 

jurisdiction on which the model was originally developed. The distribution of the variables 12 

follows the level of pedestrian activity found for each jurisdiction (i.e., Pima County < Milton < 13 

Toronto). Of particular note are the extremely large population and employment densities of the 14 

Downtown Toronto sites. In addition, the percentages of people who walk to work and of 15 

households that do not own any vehicles in Downtown Toronto are also high – despite the high 16 
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median income associated with the region – suggesting that the non-motorized transportation 1 

mode prevails in the region. It is also noted that some variables of the Toronto sites are outside 2 

of the range captured in the original DD model calibration datasets, which could cause issues 3 

when the DD models are applied. The variables for Milton and Pima County, in general, fall 4 

within the range of values of the DD model calibration datasets. 5 

 6 

 7 
Figure 2 Boxplots of selected explanatory variables for selected DD models 8 

 9 

Two considerations are made regarding the explanatory variables used in the model’s 10 

applications. The first is that one of the variables employed in Hankey et al. (6) and Singleton et 11 

al. (15) is household income. Because both models were developed in US jurisdictions, US 12 

Dollars are the initial unit used. For the model’s application to Milton and Toronto, data sources 13 

provide household income in Canadian Dollars. In the application of these models to the 14 

Canadian jurisdictions, household incomes were not converted to US Dollars, as it is assumed 15 

that the variable in the original model has the objective of capturing the purchasing power of the 16 

population. The second point is that the models proposed by Hankey et al. (6) and Sanders et al. 17 

(7) considered the count of residential addresses. The authors did not clearly state in their studies 18 

if multi-unit residential buildings are counted as one or as multiple addresses. Many open data 19 

sources report a single address per building regardless of the number of individual units in the 20 

building and consequently, the present work counted every residential address as one point. 21 

 22 
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Summary of the applications of the DD models 1 

Table 3 presents a summary of the applications of the DD models to the sites in Milton, Pima 2 

County, and Toronto. Four measures of performance are shown: the average of the AADPT 3 

estimate for all sites in the jurisdiction, MAE, the ratio of MAE to the average true AADPT, and 4 

MAPE. The models that estimate annual pedestrian volume were converted to AADPT. The 5 

table also provides the performance measures for the original study, whenever available, to 6 

compare the magnitude of errors between the application and the original model. We note that 7 

limited information on the goodness-of-fit of the original models was provided in the studies, 8 

particularly for conventional error indicators, such as MAE and MAPE.   9 

 In computing the summary performance indications presented in Table 3 we have made 10 

adaptations to two of the DD models. The first, indicated by footnote 3 in Table 3, was to 11 

constrain the value of the “Park Area” explanatory variable in the Singleton model to a 12 

maximum value of 75 acres. Examination of the model performance showed that for a small 13 

number of sites in Pima Country, the Park Area was significantly larger than 75 acres, but these 14 

large values produced extremely large model estimates of pedestrian volumes that were clearly 15 

unrealistic. 16 

The second adaptation, indicated as footnote 4 in Table 3, was to constrain the value of 17 

the “Number of people working from home” explanatory variable in the Munira model to a 18 

maximum of 100. For some sites in Toronto, the number of people working from home was 19 

much larger than 100 and for these sites the model predicted extremely large pedestrian volumes 20 

that were clearly unrealistic. 21 

Both adaptations were made to avoid including model estimation errors that were clearly 22 

unrealistic and would not be used in practice. The threshold values were selected by examining 23 

the distribution of values of the explanatory variables and the resulting model estimates, but we 24 

recognize that establishing these constraints is subjective. 25 

 26 

DISCUSSION AND CONCLUSIONS 27 

The results of the spatial transferability analysis presented in Table 3 show that (a) the 28 

performance of each DD model varied substantially across the different jurisdictions and (b) the 29 

performance of the six DD models within a single jurisdiction also differed substantially. The 30 

model developed by Sanders et al. (7) provided the poorest accuracy, especially for the Milton 31 

and Pima County sites. Besides being the simplest model (i.e., only three explanatory variables), 32 

the model’s constant adds a significant value to the “baseline” estimate. For example, in sites 33 

with no residential addresses, commercial places, and universities, the model estimates an 34 

AADPT of 1,152, which is considerably greater than the average AADPT observed in Milton 35 

(313) and Pima County (28). None of the other models, which are discussed below, presented 36 

systematic problems. 37 

 The applications for Milton are the ones that provided the best performance. The ratios of 38 

MAE and average true AADPT ranged from 0.52 to 0.78, and are similar in magnitude to those 39 

reported for the original calibration/validation datasets of the DD models (8,17). We believe that 40 

there are two reasons for this good level of spatial transferability. The first is that the average 41 

pedestrian volume observed in Milton is similar to those in the jurisdictions where the models 42 

were originally calibrated. The second is that the central tendencies (e.g., average and median) 43 

and distribution of the values of the explanatory variables for the Milton sites (Figure 2) fits the 44 

range of values used to calibrate the models. These points indicate that the sites in Milton are 45 
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TABLE 3 Summary of DD model applications 1 

Study 

  Original study   
Milton (n = 21) 

Avg. True AADPT = 313 
  

Pima County (n = 81) 

Avg. True AADPT = 28 
  

Toronto (n = 28) 

Avg. True AADPT = 23,481 

  
Avg. 

AADPT 
MAE 

MAE/ 

AADPT 
MAPE   

1Avg. 

AADPT MAE 
2MAE/ 

AADPT MAPE   
1Avg. 

AADPT 
MAE 

2MAE/ 

AADPT 
MAPE   

1Avg. 

AADPT 
MAE 

2MAE/ 

AADPT 
MAPE 

Griswold et al. (14)   2,433 NA - NA   265 164 0.52 81%   91 69 2.46 574%   101,925 80,789 3.44 662% 

Hankey et al. (6)   192 NA - NA   329 244 0.78 117%   172 145 5.18 1440%   5,448 18,190 0.77 74% 

Munira et al. (8)   605 379 0.63 NA   138 243 0.78 68%   74 57 2.04 675%   38,4734 40,721 1.73 99% 

Sanders et al. (7)   NA NA - 39%   2,668 2,355 7.52 1611%   1,295 1,267 45.25 13013%   89,602 86,847 3.70 593% 

Schneider et al. (17)   186 120 0.65 NA   179 205 0.65 69%   47 29 1.04 224%   Inf. Inf. Inf. Inf. 

Singleton et al. (15)   267 NA - NA   360 166 0.53 86%   1123 87 3.11 465%   13,185 15,461 0.66 86% 

1Average AADPT for the application.  2 
2MAE divided by the Average True AADPT.  3 
3A maximum value constraint of 75 acres to the park area was introduced.  4 
4A maximum value constraint of 100 people to the population working at home was introduced.  5 
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more consistent in terms of site characteristics and pedestrian volumes with the model calibration 1 

datasets than the sites in Pima County or in Toronto. 2 

 Figure 3 displays scatterplots of the observed and estimated AADPTs for analysis of the 3 

two models that demonstrated the highest accuracy. It is observed that both models 4 

underestimated the pedestrian volumes for the five sites with the greatest AADPTs (the same 5 

also happened for the other three DD models). An assessment of each site showed that all of 6 

them are associated with the presence of schools nearby. It should be noted that both Griswold et 7 

al. (14) and Singleton et al. (15) include the count of schools in their equations. This may suggest 8 

that the presence of a school in Milton generates more pedestrian trips than in California and 9 

Utah (jurisdictions where the DD models were developed). 10 

 11 

 12 
Figure 3 Estimated and observed AADPT for sites in Milton for the two most accurate DD 13 

models 14 

 15 

 Regarding the application for Pima County, it is observed that the average AADPT 16 

estimates are two to three times lower than for Milton. This was expected due to the reduced 17 

potential of pedestrian trip generation associated with the land use and socioeconomic attributes 18 

in the Pima County sites, as shown in Figure 2 (e.g., low population and employment densities 19 

and low percentages of people that walk to work). Nevertheless, systematic overestimation is 20 

still found for the estimations of all five DD models. The combination of these facts suggests that 21 

the pedestrian activity generated by a given attribute is lower in the Pima County sites than in the 22 

sites of the original models. For example, the presence of a commercial establishment or a school 23 

might produce fewer pedestrian trips in Pima County than in the sites from the original 24 

calibration. The Schneider et al. (17) model performed the best in Pima County and is also the 25 

one with the lowest average AADPT. Different relationships between explanatory variables and 26 

the number of produced trips (i.e., model coefficients) across jurisdictions may be related to 27 

jurisdictional specific characteristics such as level of motorization, incentives to use active 28 

transportation, land use mix, weather, and others. In summary, none of the DD models was able 29 

to adequately account for the extremely low pedestrian activity in the Pima County sites (average 30 

AADPT = 28), probably because of the different contexts in which the models were calibrated. 31 

 Concerning Toronto, the performance of the DD models developed by Munira et al. (8), 32 

Griswold et al. (14), and Schneider et al. (17) was severely impacted by the extremely large 33 

employment and population densities and the large number of people working at home observed 34 

in Downtown Toronto. The limits of these variables in the Downtown Toronto sites are 35 
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significantly outside the range of the variables considered in the calibration of the models (Figure 1 

2). For example, the maximum value of employment density observed in Schneider’s model is 2 

111,269 employees per square mile, whereas the average and maximum values in the sites of 3 

Toronto are 255,842 and 788,478 employees per square mile, respectively. The facts that the 4 

models were not calibrated for this range of variables and that independent variables are 5 

exponentiated resulted in some highly unrealistic AADPT estimates, especially for the Schneider 6 

et al. (17) model. 7 

 Surprisingly, despite considering the population density as one of its explanatory 8 

variables, the Hankey et al. (6) model systematically underestimated the AADPT predictions. In 9 

their study, no information regarding the range of the population density used for the model 10 

calibration is provided.  11 

The Singleton et al. (15) model provided the best accuracy for Toronto. The model 12 

includes population and employment densities in its formulation, and though the distribution of 13 

both variables for the Downtown Toronto sites differs considerably from that observed in the 14 

original dataset (Utah, US) (see Figure 2), the authors ln-transformed both variables before the 15 

model calibration, limiting the influence that very large values of these explanatory variables 16 

have on the AADPT estimate. Figure 4 shows the Singleton’s model error as a function of the 17 

observed AADPT. It is noted that the model provided reasonable estimates up to values of 18 

AADPT close to 20,000. After that, consistent underestimation is seen. 19 

 20 

 21 
Figure 4 Toronto – Singleton et al. (15) model error as a function of observed AADPT 22 

 23 

 To conclude the assessment of the DD models, Table 4 shows the rank of the models 24 

based on the ratio between MAE and true average AADPT. Overall, the models developed by 25 

Singleton et al. (15) and Sanders et al. (7) presented the best and worst transferability 26 

performance, respectively. The model proposed by Schneider et al. (17) provided reasonable 27 

accuracy for Milton, the best performance for Pima County, but showed unrealistic estimates for 28 

Toronto. The model calibrated by Hankey et al. (6) consistently overestimated for Pima County 29 

and underestimated for Toronto. The model proposed by Griswold et al. (14) provided the best 30 

accuracy for Milton, while the model developed by Munira et al. (8) showed consistent 31 

performance across all three jurisdictions. 32 

 The key takeaway from this paper is that the DD models evaluated in this research 33 

performed considerably differently across jurisdictions with distinct land use and socioeconomic 34 
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features and levels of pedestrian activity. Five of the models performed reasonably well for 1 

Milton, a jurisdiction that has similar characteristics to the jurisdictions on which the original DD 2 

models were calibrated. However, these models performed poorly when applied to sites in 3 

Toronto and in Pima County. Furthermore, the relative performance of the models was not 4 

consistent across the different jurisdictions. It is clear that naively applying the models to 5 

jurisdictions that are substantially different from the jurisdictions where the DD models were 6 

calibrated can result is very large estimation errors and is not recommended. Establishing if the 7 

jurisdiction of interest is “substantially” different from the calibration jurisdiction can be done by 8 

examining the distribution of the explanatory variables from the jurisdiction of interest and 9 

comparing this to the range of values from the calibration data set. However, this can only be 10 

done if the model developers have reported the characteristics of the calibration dataset.  11 

Furthermore, establishing that the jurisdiction of interest is not substantially different from the 12 

original calibration data set does not guarantee that the application of that model will provide 13 

pedestrian volume estimates of acceptable accuracy.  14 

 15 

TABLE 4 Summary of DD model performance 16 

Study 
MAE/AADPT 

Average Rank 
Milton Pima County Toronto 

Griswold et al. (14) 0.52 2.46 3.44 2.1 3 

Hankey et al. (6) 0.78 5.18 0.77 2.2 4 

Munira et al. (8) 0.78 2.04 1.73 1.5 2 

Sanders et al. (7) 7.52 45.25 3.70 18.8 6 

Schneider et al. (17) 0.65 1.04 50.001 17.2 5 

Singleton et al. (15) 0.53 3.11 0.66 1.4 1 

Best 0.52 1.04 0.66 1.4 - 

Worst 7.52 45.25 50.00 18.8 - 
1An upper limit of 50 was introduced 17 
 18 

 After reviewing studies reported in the literature that developed DD models and making 19 

significant efforts to apply these models, some suggestions are made to researchers on how to 20 

make their methods and models more easily transferrable: 21 

1. Clearly describe the explanatory variables used in the model. For example, defining if multi-22 

unit residential buildings are counted as one or as multiple addresses and stating the criteria 23 

for classifying an establishment as a commercial one.  24 

2. Provide a descriptive summary of pedestrian volume and explanatory variables, so other 25 

researchers can have a good understanding of the jurisdiction where the model was 26 

developed.  27 

3. Include conventional indicators to assess the model’s performance, such as MAE and MAPE. 28 

As stated in previous sections, it was hard to position the studies in terms of accuracy, since 29 

not always those kinds of indicators were available. 30 

4. Place greater emphasis on using explanatory variables that are widely available across 31 

jurisdictions to enhance the opportunity for application of these models in different 32 

jurisdictions. 33 

For future work, developing DD models using local data may help the assessment of 34 

spatially transferred models in terms of model coefficients and accuracy. There is also a need for 35 

further research to examine ways to improve the spatial transferability of existing DD models, 36 
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including methods that enable locally calibrating the AADPT estimates using pedestrian volume 1 

data that is available for sites in the target jurisdiction. Another point that has not been explored 2 

yet is to what extent the compilation of different municipalities into a single model affects the 3 

quality of the modeling. For example, some studies used data from different municipalities 4 

within a county or state (14,15). If the relationship between explanatory variables and pedestrian 5 

volume (i.e., model coefficients) is different across municipalities, increasing the dataset sample 6 

size by combining distinct municipalities may not be beneficial to the model. 7 

 8 

ACKNOWLEDGMENTS 9 

The authors gratefully acknowledge (i) the jurisdictions of Milton, Pima County, and Toronto for 10 

providing permission to use the pedestrian volume data and for providing rich open data portals 11 

that were essential sources of information for this research; (ii) Miovision for providing access to 12 

the pedestrian data; and (iii) Transport Canada for providing funding that supported this work. 13 

The work in this paper reflects the views of the authors and there is no explicit or implicit 14 

endorsement by any of the aforementioned jurisdictions/agencies/companies. 15 

  16 

AUTHOR CONTRIBUTIONS 17 

The authors confirm contribution to the paper as follows: study conception and design: Sobreira 18 

L. T. P., Hellinga B.; data collection: Sobreira L. T. P., Hellinga B.; analysis and interpretation of 19 

results: Sobreira L. T. P., Hellinga B.; draft manuscript preparation: Sobreira L. T. P., Hellinga 20 

B. All authors reviewed the results and approved the final version of the manuscript. 21 



17 

 

REFERENCES 

1.  Martin A, Suhrcke M, Ogilvie D. Financial incentives to promote active travel: An 

evidence review and economic framework. American Journal of Preventive Medicine. 

2012;43(6). https://doi.org/10.1016/j.amepre.2012.09.001 

2.  Government of Canada. Government of Canada announces the country’s first-ever federal 

strategy and fund dedicated to building active transportation trails and pathways. 2021. 

Available from: https://www.canada.ca/en/office-

infrastructure/news/2021/07/government-of-canada-announces-the-countrys-first-ever-

federal-strategy-and-fund-dedicated-to-building-active-transportation-trails-and-

pathways.html. Accessed: May 4, 2022. 

3.  Pucher J, Buehler R, Merom D, Bauman A. Walking and cycling in the United States, 

2001-2009: Evidence from the National Household Travel Surveys. American Journal of 

Public Health. 2011 Dec 1;101(SUPPL. 1). https://doi.org/10.2105/AJPH.2010.300067 

4.  Ryus P, Butsick A, Proulx FR, Schneider RJ, Hull T. Methods and Technologies for 

Pedestrian and Bicycle Volume Data Collection. Washington, DC; 2014. 

https://doi.org/10.17226/24732. 

5.  FHWA. Traffic Monitoring Guide. Federal Highway Administration, U.S. Department of 

Transportation, Washington D.C. 2016.  

6.  Hankey S, Lu T, Mondschein A, Buehler R. Spatial models of active travel in small 

communities: Merging the goals of traffic monitoring and direct-demand modeling. 

Journal of Transport and Health. 2017;7(January):149–59. 

https://doi.org/10.1016/j.jth.2017.08.009 

7.  Sanders RL, Frackelton A, Gardner S, Schneider R, Hintze M. Ballpark method for 

estimating pedestrian and bicyclist exposure in Seattle, Washington: Potential option for 

resource-constrained cities in an age of big data. Transportation Research Record. 

2017;2605(1):32–44. https://doi.org/10.3141/2605-03 

8.  Munira S, Sener IN, Dai B. A Bayesian spatial Poisson-lognormal model to examine 

pedestrian crash severity at signalized intersections. Accident Analysis and Prevention. 

2020;144(December 2019):105679. https://doi.org/10.1016/j.aap.2020.105679 

9.  Miranda-Moreno L, Nosal T, Schneider R, Proulx F. Classification of bicycle traffic 

patterns in five North American cities. Transportation Research Record. 2013;(2339):68–

79. https://doi.org/10.3141/2339-08 

10.  Medury A, Griswold JB, Huang L, Grembek O. Pedestrian Count Expansion Methods: 

Bridging the Gap between Land Use Groups and Empirical Clusters. Transportation 

Research Record. 2019 May 1;2673(5):720–30. 

https://doi.org/10.1177/0361198119838266 

11.  Nordback K, Kothuri S, Johnstone D, Lindsey G, Ryan S, Raw J. Minimizing Annual 

Average Daily Nonmotorized Traffic Estimation Errors: How Many Counters Are Needed 

per Factor Group? Transportation Research Record. 2019;2673(10):295-310. 

https://doi.org/10.1177/0361198119848699  

12.  Kim S, Park S, Jang K. Spatially-varying effects of built environment determinants on 

walking. Transportation Research Part A: Policy and Practice. 2019;123(February):188–

99. https://doi.org/10.1016/j.tra.2019.02.003 

13.  Miranda-Moreno LF, Fernandes D. Modeling of pedestrian activity at signalized 

intersections: Land use, urban form, weather, and spatiotemporal patterns. Transportation 

Research Record. 2011;(2264):74–82. https://doi.org/10.3141/2264-09 



18 

 

14.  Griswold JB, Medury A, Schneider RJ, Amos D, Li A, Grembek O. A Pedestrian 

Exposure Model for the California State Highway System. Transportation Research 

Record. 2019;2673(4):941–50. https://doi.org/10.1177/0361198119837235 

15.  Singleton PA, Park K, Lee DH. Varying influences of the built environment on daily and 

hourly pedestrian crossing volumes at signalized intersections estimated from traffic 

signal controller event data. Journal of Transport Geography. 2021;93(January):103067. 

https://doi.org/10.1016/j.jtrangeo.2021.103067  

16.  Ewing R, Cervero R. Travel and the Built Environment. Journal of the American Planning 

Association. 2010;76(3):265–94. https://doi.org/10.1080/01944361003766766 

17.  Schneider RJ, Schmitz A, Qin X. Development and validation of a seven-county regional 

pedestrian volume model. Transportation Research Record. 2021;2675(6):352–68. 

https://doi.org/10.1177/0361198121992360  

18.  Munira S, Sener IN. Use of Direct-Demand Modeling in Estimating Nonmotorized 

Activity: A Meta-analysis. 2017. Available from: https://www.vtti.vt.edu/utc/safe-d/wp-

content/uploads/2018/04/UTC-Safe-D_Direct-Demand-Model-for-PedBike_TTI-

Report_12Oct17_Final.pdf 

 


